Monodromy Matrix for Linear Difference Operators with Almost Constant Coefficients
نویسندگان
چکیده
منابع مشابه
Critical Oscillation Constant for Difference Equations with Almost Periodic Coefficients
and Applied Analysis 3 is conditionally oscillatory with the oscillation constant K 1/4. It is known see 22 that the equation [ r t y′ t ]′ γs t t2 y t 0, 1.5 where r, s are positive periodic continuous functions, is conditionally oscillatory as well. We also refer to 23 and 24–29 which generalize 23 for the discrete case, see 30 . Since the Euler difference equation Δyk γ k 1 k yk 1 0 1.6 is c...
متن کاملThe spectrum of differential operators of order 2n with almost constant coefficients
We discuss the spectral properties of higher order ordinary differential operators. If the coefficients differ from constants by small perturbations, then the spectral properties are preserved. In this context, “small perturbations” are either short range (i.e., integrable) or long range, but slowly varying. This generalizes classical results on second order operators. Our approach relies on an...
متن کاملLinear Differential Algebraic Equations with Constant Coefficients
Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملLinear Elliptic Difference Inequalities with Random Coefficients
We prove various pointwise estimates for solutions of linear elliptic difference inequalities with random coefficients. These estimates include discrete versions of the maximum principle of Aleksandrov and Harnack inequalities and Holder estimates of Krylov and Safonov for elliptic differential operators with bounded coefficients.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1995
ISSN: 0022-247X
DOI: 10.1006/jmaa.1995.1324